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ABSTRACT 

This paper reviews the special case of an order which is called Majorization ordering. It generalizes vector 

Majorization and some applications that have come after the publication of Marshall and Olkin Inequalities. It 

presents basic properties of Majorization and two important kinds of Majorization which are Weakly 

Supermajorization and Weakly Submajorization and some relations between them. Furthermore, this paper also 

contains maps from ℝ𝑛 to ℝ𝑚 which preserve various orders that most of these orders are elementary and 

useful characterizations of Majorization, as Majorization together with the strongly related concept of schur-

convexity gives an important characterization of convex functions that expresses preservation of order rather 

than convexity. Also in this study, examples are used to explore the characteristics of majorization, weakly 

supermajorization, and weakly submajorization as well as the relationships between them. We described the 

application of majorization on various functions, such as monotonic functions, convex functions, and so on, 

with some properties by taking into account the concept of our title majorization and its applications on some 

Functions. Theorems and examples are used to explain such outcomes. 
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INTRODUCTION: 

Comparison of two vectors sometimes leads to interes-

ting inequalities, which is an important tool in compar-

ing vectors. In general it is said that vectors are not 

comparable. They are either equal or unequal, yes we 

have been comparing the vectors in terms of their 

norms, but the readers will learn a new type of com-

parison of vectors in term their co-ordinates, and how 

it will be applied on functions. Majorization theory 

provides a method to compare the vectors with same 

number of co-ordinates. I hope that the result in this 

work will lead readers to discover further applications 

and extensions.  

 

For this Rajendra Bhatia has given details in the 

“Matrix Analysis" (Bhatia, 1997). If we talk about 

history of majorization, indeed many of the key ideas 

related to majorization were discussed in the volume 

entitled “Inequalities” by Hardy, Littlewood and Polya 

(Hardy. E. & G. Polya. 1934). The appearance of 

Marshall and Olkin (W. Marshal. & Olkin. 1979) book 

on inequalities with special emphasize on majorization 

generated a surge of interest in majorazation and Schur 

Convexity. probability of covering the circle by 

random arcs, by Shepp and Huffer (Huffer & A Shepp, 

1987) effect of unequal catchability on estimates of the 

number of classes in a population by Nayak and 

Christman (Nayak & Christman, 1992) the mean wai-
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ting time for a pattern probability by Ross (Ross, 

1999). Balinski and Young provided a good survey of 

the methods usually considered in (L. Balinski and 

young, 2010).  

 

Martin Mittelbach and Eduard Jorswieck applied majo-

rization theory to compare different tap correlation 

scenarios for perfect, partial, and no CSI at the trans-

mitter (Mittelbech, 2008)  Eduard Jorswieck and Mart-

in Mittelbach used majorization for functions to show 

that the average rate with perfectly informed receiver 

is largest for uncorrelated scattering if the transmitter 

is uninformed (lorseck & Mittelbech, 2009). 

Basic Notations and Preliminaries 

Majorization is an important order notion that arises in 

several areas of mathematics. The following notations 

will be used in the subsequent discussion.                                                   

Let   𝑎 ∈ ℝ𝑛, then 𝑎↑ and 𝑎↓ denotes the vectors which 

obtained by rearranging the co-ordinates of 𝑎 in 

increasing order and decreasing order respectively,  

Where,  ℝ𝑛 Shows set of 𝑛 tuples. 

For any two real numbers 𝑎 and 𝑏, maximum of 𝑎 and 𝑏, and minimum of 𝑎 and 𝑏 are denoted as (𝑎 ∨ 𝑏) and (𝑎 ∧ 𝑏) respectively. 

 

Definition 2.1 

For any real number 𝑎 ∈ ℝ the function 𝑎+, replaces the negative real number to 0, that is 𝑎+ = 𝑎 ∨ 0. 
 

Definition 2.2  

For any real number 𝑎 ∈ ℝ, |𝑎| = 𝑎 ∨ (−𝑎). 
Now we will extend these to  ℝ𝑛. 

Let   𝑎, 𝑏 ∈ ℝ𝑛,𝑎 ∧ 𝑏 = (𝑎1 ∧ 𝑏1, 𝑎2 ∧ 𝑏2, . . . , 𝑎𝑛 ∧ 𝑏𝑛). 
Now for 𝑎 ∈ ℝ𝑛, the function 𝑎+ replaces the negative co-ordinates of 𝑎 by 0. that is 𝑎+ = (𝑎1 ∨ 0, 𝑎2 ∨ 0, … , 𝑎𝑛 ∨0). 
Also for any 𝑎 ∈ ℝ𝑛, |𝑎| = (𝑎1 ∨ (−𝑎1), 𝑎2 ∨ (−𝑎2), . . . , 𝑎𝑛 ∨ (−𝑎𝑛)).  
 

Definition 2.3  

Majorization 

Let 𝑎, 𝑏 ∈ ℝ𝑛, we call 𝑎 is majorized by 𝑏 in symbol 𝑎 ≺ 𝑏, if 
 𝑎 ≺ 𝑏 ⇒ ∑ 𝑎𝑖𝑛

𝑖=1 = ∑ 𝑏𝑖𝑛
𝑖=1  𝑎𝑛𝑑 ∑ 𝑎𝑖↓𝑘

𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘
𝑖=1  𝑓𝑜𝑟  1 ≤ 𝑘 ≤ 𝑛 

 

In case 𝑎, 𝑏 are in decreasing order. 

The order of the entries of the vectors does not affect the majorization that is if we arrange the vectors in 

increasing order, then 
 ∑ 𝑎𝑖↑𝑛
𝑖=1 = ∑ 𝑏𝑖↑𝑛

𝑖=1  𝑎𝑛𝑑 ∑ 𝑎𝑖↑𝑘
𝑖=1 ≥ ∑ 𝑏𝑖↑𝑘

𝑖=1  ∀  1 ≤ 𝑘 ≤ 𝑛 

 

Let 𝑒 denotes the vector (1,1,1, . . . . ,1) and for any subset 𝐼 of {1,2,3, . . . , 𝑛}, let 𝑒𝑗 denotes the vector whose 𝑗𝑡ℎ = 

component is 1 if 𝑗 ∈ 𝐼 and 0 if 𝑗 ∉ 𝐼. Given a vector 𝑎 ∈ ℝ𝑛 , 
Then  

 

Where ⟨⋅,⋅⟩ denotes the inner product in ℝ𝑛 and 𝑡𝑟 stands for trace. 
 ∑ 𝑎𝑖↓𝑘
𝑖=1 = max|𝐼|=𝑘⟨𝑎, 𝑒𝐼⟩, 
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Also 𝑎 ≺ 𝑏 if and only for each subset 𝐼 of {1,2,3, . . . , 𝑛}, there exist a subset 𝐽 with |𝐼| = |𝐽|, such that ⟨𝑎, 𝑒𝐼⟩ =⟨𝑏, 𝑒𝐽⟩ and tr a=tr b 

Definition 2.4  

Let 𝑎, 𝑏 ∈ ℝ𝑛 , we call 𝑎 is weakly submajorized by 𝑏 in symbol 𝑎 ≺𝑤 𝑏, if 
 ∑ 𝑎𝑖↓𝑘
=1 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1  for 1 ≤ 𝑘 ≤ 𝑛. 
 

Definition 2.5  

Let 𝑎, 𝑏 ∈ ℝ𝑛 , we call 𝑎 is weakly supermajorized by 𝑏 in symbol 𝑎 ≺𝑤 𝑏, if ∑ 𝑎𝑖↑𝑘
𝑖=1 ≥ ∑ 𝑏𝑖↑𝑘

𝑖=1  for 1 ≤ 𝑘 ≤ 𝑛. 
 

Definition 2.6  

A real valued function 𝑓 from ℝ𝑛 to ℝ𝑚 be isotone if 𝑎 ≺ 𝑏 ⇒ 𝑓( 𝑎) ≺𝑤 𝑓(𝑏)  
 

Definition 2.7 

A real valued function 𝑓 from ℝ𝑛 in to ℝ𝑚 be strongly isotone if 𝑎 ≺𝑤 𝑏 ⇒ 𝑓( 𝑎) ≺𝑤 𝑓(𝑏)  
 

Definition 2.8  

Function 𝑓 from ℝ𝑛 in to ℝ𝑚 be strictly isotone if 
 𝑎 ≺ 𝑏 ⇒ 𝑓( 𝑎) ≺ 𝑓(𝑏)  
 

More ever if 𝑚 = 1, we have 𝑓: ℝ𝑛 → ℝ, then isotone maps are precisely schur convex maps. 
 

Lemma 2.9  

For 𝑎, 𝑏 ∈ ℝ𝑛 the following statements are equivalent. 

1. 𝑎 ≺ 𝑏. 
2. 𝑎  is obtained from 𝑏 by a finite number of 𝑇 −transformations. 

3. 𝑎 is in the convex hull of all vectors obtained by permuting the co-ordinates of 𝑏. 
4. 𝑎 = 𝐴𝑏 for some doubly stochastic matrix 𝐴. 

 

Lemma 2.10 

Let 𝑎, 𝑏 be two vectors with non-negative co-ordinates, then 𝑎 ≺𝑤 𝑏 if and only if 𝑎 = 𝑄𝑏 for some doubly 

substochastic matrix 𝑄 

 

RESULTS:  

In some other terms the following import-ant results 

about the properties of majorization, weakly submajor-

ization and weakly supermajorization and relations 

between them was established in (Bhatia, 1997). We 

provide the proof for convenience. 
 

 

This theorem will show the relation of majorization, 

weakly submajorization and weakly supermajoriz-

ation

Theorem 3.1  

For 𝑎, 𝑏 ∈ ℝ𝑛 

1. 𝑎 ≺ 𝑏 ⇔ 𝑎 ≺𝑤 𝑏, 𝑎 ≺𝑤 𝑏. 
2. 𝑎 ≺𝑤 𝑏 ⇒ 𝛼𝑎 ≺𝑤 𝛼𝑏 and 𝑎 ≺𝑤 𝑏 ⇒ 𝛼𝑎 ≺𝑤 𝛼𝑏,   for every  𝛼 > 0. 

3. 𝑎 ≺𝑤 𝑏 ⇔ −𝑎 ≺𝑤− 𝑏. 
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4. 𝑎 ≺ 𝑏 ⇒ 𝛼𝑎 ≺ 𝛼𝑏, For every 𝛼 ∈ ℝ. 
 

Proof 1    

Let 𝑎 ≺ 𝑏, then by definition we have 
 ∑ 𝑎𝑖𝑛
𝑖=1 = ∑ 𝑏𝑖𝑛

𝑖=1  𝑎𝑛𝑑 ∑ 𝑎𝑖↓𝑘
𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1  𝑓𝑜𝑟  1 ≤ 𝑘 ≤ 𝑛 

 

Also if 𝑎 ≺ 𝑏, then by definition we have 
 ∑ 𝑎𝑖↑𝑛
𝑖=1 = ∑ 𝑏𝑖↑𝑛

𝑖=1  𝑎𝑛𝑑 ∑ 𝑎𝑖↑𝑘
𝑖=1 ≥ ∑ 𝑏𝑖↑𝑘

𝑖=1  ∀  1 ≤ 𝑘 ≤⇒ 𝑎 ≺𝑤 𝑏. ⇒ 𝑎 ≺𝑤 𝑏 
 

Conversely,  

Let 𝑎 ≺𝑤 𝑏 and 𝑎 ≺𝑤 𝑏. 
To prove 𝑎 ≺ 𝑏, when 𝑎 ≺𝑤 𝑏, this implies           ∑ 𝑎𝑖↑𝑘
𝑖=1 ≥ ∑ 𝑎𝑖↑𝑘

𝑖=1                                                (1) 

And we have the relation 
    ∑ 𝑎𝑖↑𝑘

𝑖=1 = ∑ 𝑎𝑖𝑛
𝑖=1 − ∑ 𝑎𝑖↓𝑛−𝑘

𝑖=1                            (2) 

Similarly for 𝑏 we have   
 ∑ 𝑏𝑖↑𝑘
𝑖=1 = ∑ 𝑏𝑖𝑛

𝑖=1 − ∑ 𝑏𝑖↓𝑛−𝑘
𝑖=1                               (3) 

 

Using (2) and (3) in equation (1) we have 
 ∑ 𝑎𝑖𝑛
𝑖=1 − ∑ 𝑎𝑖↓𝑛−𝑘

𝑖=1 ≥ ∑ 𝑏𝑖𝑛
𝑖=1 − ∑ 𝑏𝑖↓𝑛−𝑘

𝑖=1 , 
 

Since we have 𝑎 ≺𝑤 𝑏, that is 
  ∑ 𝑎𝑖↑𝑛−𝑘

𝑖=1 ≥ ∑ 𝑎𝑖↑𝑛−𝑘
𝑖=1 ⇒ ∑ 𝑎𝑖𝑛

𝑖=1 ≥ ∑ 𝑏𝑖𝑛
𝑖=1 .           (4) 

 

Similarly by 𝑎 ≺𝑤 𝑏 we can show that 
 ∑ 𝑎𝑖𝑛
𝑖=1 ≤ ∑ 𝑏𝑖𝑛

𝑖=1 .                                               (5) 

 

From equations (4) and (5) we have ∑ 𝑎𝑖𝑛
𝑖=1 = ∑ 𝑏𝑖𝑛

𝑖=1 , 
 

This result together with the given conditions imply 𝑎 ≺ 𝑏. 
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(2) Let  𝑎 ≺𝑤 𝑏,  to show  𝛼𝑎 ≺𝑤 𝛼𝑏. 𝑎 ≺𝑤 𝑏, implies 
 ∑ 𝑎𝑖↑𝑘
𝑖=1 ≥ ∑ 𝑏𝑖↑𝑘

𝑖=1 . 
Now for 𝛼 > 0 we have 
 

 
 

Also let 𝑎 ≺𝑤 𝑏, which implies 
 ∑ 𝑎𝑖↓𝑘
𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1 , 
 

Now for 𝛼 > 0 we have 
 

 
 (3) 𝑎 ≺𝑤 𝑏 ⇔ −𝑎 ≺𝑤− 𝑏. 
 

 

Note that (−𝑎)𝑖↑ = −𝑎𝑖↓ using this, we see that −𝑎 ≺𝑤− 𝑏,  
 

 
 

 

 
 ⇔ ∑ −𝑎𝑖↓𝑘

𝑖=1 ≥ ∑ −𝑏𝑖↓𝑘
𝑖=1  

 ⇔ ∑ 𝑎𝑖↓𝑘
𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1 ⇔  𝑎 ≺𝑤 𝑏 

 (4)    If 𝑎 ≺ 𝑏, which implies 
 ∑ 𝑎𝑖↓𝑘

𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘
𝑖=1  for 1 ≤ 𝑘 ≤ 𝑛 and ∑ 𝑎𝑖𝑛

𝑖=1 = ∑ 𝑏𝑖𝑛
𝑖=1 . 

 

To prove 𝛼𝑎 ≺ 𝛼𝑏, we multiply both sides of the last two equations by 𝛼 ≥ 0, 
 𝛼 ∑ 𝑎𝑖↓𝑘

𝑖=1 ≤ 𝛼 ∑ 𝑏𝑖↓𝑘
𝑖=1  and 𝛼 ∑ 𝑎𝑖𝑛

𝑖=1 = 𝛼 ∑ 𝑏𝑖𝑛
𝑖=1∑ 𝛼𝑘

𝑖=1 𝑎𝑖↓ ≤ ∑ 𝛼𝑘
𝑖=1 𝑏𝑖↓, for 1 ≤ 𝑘 ≤ 𝑛

∑ 𝛼𝑛
𝑖=1 𝑎𝑖 = ∑ 𝛼𝑛

𝑖=1 𝑏𝑖 ⇒ 𝛼𝑎 ≺ 𝛼𝑏.
 

 

Now again consider 𝑎 ≺ 𝑏, which implies 
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 ∑ 𝑎𝑖↓𝑘
𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1  for 1 ≤ 𝑘 ≤ 𝑛 and ∑ 𝑎𝑖𝑛
𝑖=1 = ∑ 𝑏𝑖𝑛

𝑖=1 . 
 

Multiplying both sides by 𝛼 < 0,   
We get, 
 𝛼 ∑ 𝑎𝑖↓𝑘

𝑖=1 ≥ 𝛼 ∑ 𝑏𝑖↓𝑘
𝑖=1  for 1 ≤ 𝑘 ≤ 𝑛 ⇒ ∑ 𝛼𝑘

𝑖=1 𝑎𝑖↑ ≥ ∑ 𝛼𝑘
𝑖=1 𝑏𝑖↑

 and 𝛼 ∑ 𝑎𝑖𝑛
𝑖=1 = 𝛼 ∑ 𝑏𝑖𝑛

𝑖=1 ⇒ ∑ 𝛼𝑛
𝑖=1 𝑎𝑖 = ∑ 𝛼𝑛

𝑖=1 𝑏𝑖 ⇒ 𝛼𝑎 ≺ 𝛼𝑏.  

 

Theorem 3.2  

The relation of majorization, weakly supermajorization and weakly submajorization are reflexive and transitive. 

Proof 1 

Let 𝑎 ∈ ℝ𝑛, if we rearrange 𝑎 in decreasing order, then we have 
 ∑ 𝛼𝑛𝑖=1 𝑎𝑖 = ∑ 𝛼𝑛𝑖=1 𝑏𝑖 and  ∑ 𝑎𝑖↓𝑘𝑖=1 ≤ ∑ 𝑏𝑖    for     1≤𝑘≤𝑛 ⇒𝑎≺𝛼↓𝑘𝑖=1   
 

So ≺ is reflexive, from this we can conclude that ≺𝑤 and ≺𝑤 are also reflexive. 

Now let 𝑎↓ = (𝑎1, 𝑎2, . . . , 𝑎𝑛), 𝑏↓ = (𝑏1, 𝑏2, . . . , 𝑏𝑛) and 𝑐↓ = (𝑐1, 𝑐2, . . . , 𝑐𝑛) in decreasing order with 𝑎 ≺ 𝑏 and 𝑏 ≺ 𝑐, we want to show that  𝑎 ≺ 𝑐. 

Since 𝑎 ≺ 𝑏, this implies 
 

 

 

 

Also, since 𝑏 ≺ 𝑐 this implies 
 

 

 

From equations (6) and (7) we have 

 

 

This shows 𝑎 ≺ 𝑐, which implies ≺ is transitive. Hence ≺𝑤 and ≺𝑤 are also transitive. 

As we have already seen that the relations of majorization, weakly submajorization and weakly supermajorization 

are all reflexive and transitive. Next, we see that none of these are a partial order relation. 

For e.g.:  

Let  𝑎 = (1,2,3,4,5) and  𝑏 = (3,2,1,5,4),  
Clearly  
 𝑎 ≠ 𝑏. 
One can easily check that  𝑎 ≺ 𝑏 And  
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𝑏 ≺ 𝑎. 
 

Same example will work for weakly submajorization 

and weakly supermajorization also. In fact, for two 

vectors 𝑎 and 𝑏, if 𝑎 is obtained by permuting the co-

ordinates of 𝑏, one can easily see that 𝑎 ≺ 𝑏 and vice 

versa but they are not equal vectors, also none of these 

are symmetric, clearly ≺𝑤 and ≺𝑤 are not symmetric 

too, the symmetric relation is only possible, if 𝑎 = 𝑝𝑏 

for some permutation matrix 𝑝, otherwise ≺ is anti-

symmetric, reflexive and transitive on the set {𝑎 ∈ℝ𝑛: 𝑎1 ≥ 𝑎2 ≥. . . ≥ 𝑎𝑛}. 
 

Theorem 3.3 

Some Equivalent Properties 
 

Let 𝑎, 𝑏 ∈ ℝ𝑛, then 

1. 𝑎 ≺𝑤 𝑏 if and only if for all 𝑡 ∈ ℝ 
 ∑(𝑛

𝑖=1 𝑎𝑖 − 𝑡)+ ≤ ∑(𝑛
𝑖=1 𝑏𝑖 − 𝑡)+. 

 

2. 𝑎 ≺𝑤 𝑏 if and only if for all 𝑡 ∈ ℝ 
 ∑(𝑛

𝑖=1 𝑡 − 𝑎𝑖)+ ≤ ∑(𝑛
𝑖=1 𝑡 − 𝑏𝑖)+. 

 

3. 𝑎 ≺ 𝑏 if and only if for all 𝑡 ∈ ℝ 
 ∑ |𝑛

𝑖=1 𝑎𝑖 − 𝑡| ≤ ∑ |𝑛
𝑖=1 𝑏𝑖 − 𝑡|. 

 

Proof 1  

Let 𝑎 ≺𝑤 𝑏, that is 
 ∑ 𝑎𝑖↓𝑘
𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1 . 
 

Now if 𝑡 > 𝑎𝑖↓ for each    𝑖,  
Then  (𝑎𝑖 − 𝑡)+ = 0,  
For each 𝑖. 
 

Hence 
 ∑(𝑛
𝑖=1 𝑎𝑖 − 𝑡)+ ≤ ∑(𝑛

𝑖=1 𝑏𝑖 − 𝑡)+. 
Now let 𝑡 ∈ ℝ be such, that 𝑎𝑘+1↓ ≤ 𝑡 ≤ 𝑎𝑘↓ , for some 1 ≤ 𝑘 ≤ 𝑛, then 

 

= ∑(𝑘
𝑖=1 𝑏𝑖↓ − 𝑡) ≤ ∑(𝑘

𝑖=1 𝑏𝑖↓ − 𝑡)+ ≤ ∑(𝑛
𝑖=1 𝑏𝑖↓ − 𝑡)+ ⇒ ∑(𝑛

𝑖=1 𝑎𝑖↓ − 𝑡)+ ≤ ∑(𝑛
𝑖=1 𝑏𝑖↓ − 𝑡)+. 

 

Conversely, let 
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  ∑(𝑛
𝑖=1 𝑎𝑖↓ − 𝑡)+ ≤ ∑(𝑛

𝑖=1 𝑏𝑖↓ − 𝑡)+                                (8) 

 

To prove 𝑎 ≺𝑤 𝑏, if 𝑡 = 𝑏𝑘↓  for some 1 ≤ 𝑘 ≤ 𝑛,  
Then 
     ∑(𝑛
𝑖=1 𝑏𝑖 − 𝑡)+ = ∑(𝐾

𝑖=1 𝑏𝑖↓ − 𝑡) = ∑ 𝑏↓𝐾
𝑖=1 − 𝑘𝑡         (9) 

 

But 
 

 

 

From the relations (8), (9) and (10) we get 
 

From the relations (8), (9) and (10) we get 

 
 

(2)  Let 𝑎 ≺𝑤 𝑏, this implies 
 ∑ 𝑎𝑖↑𝑘
𝑖=1 ≥ ∑ 𝑏𝑖↑𝑘

𝑖=1 , 
 

To prove 
 ∑(𝑛
𝑖=1 𝑡 − 𝑎𝑖)+ ≤ ∑(𝑛

𝑖=1 𝑡 − 𝑏𝑖)+. 
 

If   𝑎 ≺𝑤 𝑏, this implies that −𝑏 ≺𝑤− 𝑎. 
By part (1), −𝑏 ≺𝑤− 𝑎 if and only if for every real number  𝑡, 
 ∑(𝑛
𝑖=1 − 𝑎𝑖 + 𝑡)+ ≤ ∑(𝑛

𝑖=1 − 𝑏𝑖 + 𝑡)+,   
 

Which is same as saying 
 ∑(𝑛
𝑖=1 𝑡 − 𝑎𝑖)+ ≤ ∑(𝑛

𝑖=1 𝑡 − 𝑏𝑖)+. 
 (3)  Let 𝑎 ≺ 𝑏, which implies ∑ 𝑎𝑖↓𝑛
𝑖=1 = ∑ 𝑏𝑖↓𝑛

𝑖=1  and ∑ 𝑎𝑖↓𝑘
𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1  for 1 ≤ 𝑘 ≤ 𝑛. 
 

Also 𝑎 ≺ 𝑏 if and only if 𝑎 ≺𝑤 𝑏 and 𝑎 ≺𝑤 𝑏 

by part (1) and (2) this holds if and only if 
 ∑(𝑛
𝑖=1 𝑎𝑖 − 𝑡)+ ≤ ∑(𝑛

𝑖=1 𝑏𝑖 − 𝑡)+ and ∑(𝑛
𝑖=1 𝑡 − 𝑎𝑖)+ ≤ ∑(𝑛

𝑖=1 𝑡 − 𝑏𝑖)+, 
 

That is if and only if 
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 ∑ |𝑛
𝑖=1 𝑎𝑖 − 𝑡| ≤ ∑ |𝑛

𝑖=1 𝑏𝑖 − 𝑡|. 
 

Majorization in Convex and Monotonic Functions 

In this section we give importance to the functions from ℝ𝑛 to ℝ𝑚, which preserve ordering majorization. Let 𝑓: 𝑅 → ℝ be function, we will denote the map induced by 𝑓 on ℝ𝑛 also by 𝑓, that is 
 𝑓(𝑎) = (𝑓(𝑎1) … 𝑓(𝑎𝑛)) 𝑓𝑜𝑟 𝑎 ∈ ℝ𝑛 
 

Similarly the function 𝑓: ℝ𝑛 → ℝ𝑚 is convex if 
 𝑓(𝑡𝑎 + (1 − 𝑡)𝑏) ≤ 𝑡𝑓(𝑎) + (1 − 𝑡)𝑓(𝑏) for 0 ≤ 𝑡 ≤ 1. 
 

To show the function |𝑎 − 𝑟| = 𝑓𝑟(𝑎) is convex, let 𝑎1, 𝑎2 ∈ ℝ𝑛 and 0 ≤ 𝑡 ≤ 1, 
 𝑓𝑟(𝑡𝑎1 + (1 − 𝑡)𝑎2) = |𝑡𝑎1 + (1 − 𝑡)𝑎2 − 𝑟| ≤ |𝑡||𝑎1 − 𝑟| + |(1 − 𝑡)||𝑎2 − 𝑟| = 𝑡|𝑎1 − 𝑟| + (1 − 𝑡)|𝑎2 − 𝑟| = 𝑡𝑓(𝑎1) + (1 − 𝑡)𝑓(𝑎2), for 0 ≤ 𝑡 ≤ 1. 
A useful characterization of majorization is the following: 
 

Theorem 3.4  

Let 𝑎, 𝑏 ∈ ℝ𝑛, then the following two conditions are equivalent: 

1. 𝑎 ≺ 𝑏. 
2. 𝑡𝑟 𝑓(a) ≤ 𝑡𝑟𝑓(b) for all convex functions 𝑓 from 𝑅 to 𝑅. 

 

Proof (𝟏)   Let 𝑎 ≺ 𝑏, then 𝑎 = 𝐴𝑏, for some doubly stochastic matrix 𝐴, so  𝑎𝑖 = ∑ 𝑎𝑖𝑗𝑛𝑗=1 𝑏𝑗  

Where 𝑎𝑖𝑗 ≥ 0 and ∑ 𝑎𝑖𝑗𝑛𝑗=1 = 1∀𝑖 Hence for every convex function 𝑓, 
 𝑓(𝑎𝑖) = 𝑓 (∑ 𝑎𝑖𝑗𝑛

𝑗=1 𝑏𝑗) ≤ ∑ 𝑎𝑖𝑗𝑛
𝑗=1 𝑓(𝑏𝑗). 

Hence 
 ∑ 𝑓𝑛
𝑖=1 (𝑎𝑖) ≤ ∑ 𝑎𝑖𝑗𝑛

𝑖,𝑗 𝑓(𝑏𝑗) = ∑ 𝑓𝑛
𝑗=1 (𝑏𝑗) ⇒ ∑ 𝑓𝑛

𝑖=1 (𝑎𝑖) ≤ ∑ 𝑓𝑛
𝑗=1 (𝑏𝑗) 

 

That is for all convex functions 𝑓 from 𝑅 to 𝑅, 
 𝑡𝑟 𝑓(a) ≤ 𝑡𝑟𝑓(b) (2)   Let 𝑡𝑟 𝑓(a) ≤ 𝑡𝑟𝑓(b)for all convex functions 𝑓 from 𝑅 to 𝑅, that is ∑ 𝑓𝑛
𝑖=1 (𝑎𝑖) ≤ ∑ 𝑓𝑛

𝑗=1 (𝑏𝑗). 
Now let 𝑓𝑟(𝑎) = |𝑎 − 𝑟| and 𝑓𝑟(𝑏) = |𝑏 − 𝑟| be convex function, then we have 

 
 

Which implies 

 ∑ |𝑛
𝑖=1 𝑎 − 𝑟 |≤ ∑ |𝑛

𝑖=1 𝑏 − 𝑟|     
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And 
 

 

Let us firstly consider 
 

Let us firstly consider 

∑(𝑛
𝑖=1 𝑎𝑖 − 𝑟)+ ≤ ∑(𝑛

𝑖=1 𝑏𝑖 − 𝑟)+ 

 

And let 𝑏𝑘↓ = 𝑟, then ∑(𝑛
𝑖=1 𝑏𝑖 − 𝑟) ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1 − 𝑘𝑟                      (13)    
But 
 ∑ 𝑎𝑖↓𝑘
𝑖=1 − 𝑘𝑟 ≤ ∑(𝑛

𝑖=1 𝑎𝑖 − 𝑟)+                    (14)    
 

From (11), (13) and (14) we get 
 
 

 
 

Now consider (12), that is 
 ∑(𝑛
𝑖=1 𝑟 − 𝑎𝑖)+ ≤ ∑(𝑛

𝑖=1 𝑟 − 𝑏𝑖)+ 

   

Let 𝑟 = 𝑏𝑘↓ , then we have 

 ∑(𝑛
𝑖=1 𝑟 − 𝑏𝑖↓)+ ≥ ∑(𝑘

𝑖=1 𝑟 − 𝑏𝑖↓) = 𝑘𝑟 − ∑ 𝑏𝑖↓𝑘
𝑖=1 , but 𝑘𝑟 − ∑ 𝑎𝑖↑𝑘

𝑖=1 ≥ ∑(𝑛
𝑖=1 𝑟 − 𝑎𝑖↑)+. 

   

For the following inequality 
 ∑(𝑛
𝑖=1 𝑟 − 𝑎𝑖↑)+ ≤ ∑(𝑛

𝑖=1 𝑟 − 𝑏𝑖↑)+, 
 

We must have 
 𝑘𝑟 − ∑ 𝑎𝑖↑𝑘

𝑖=1 ≤ 𝑘𝑟 − ∑ 𝑏𝑖↑𝑘
𝑖=1 ⇒ 𝑎 ≺𝑤 𝑏.      (16)    

 

Now from (15) and (16) we get 𝑎 ≺ 𝑏. 
Next we consider majorization on monotonic functions. 
 

Theorem 3.5  

For 𝑎, 𝑏 ∈ ℝ𝑛, the following two conditions are equivalent: 
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1. 𝑎 ≺𝑤 𝑏. 
2. 𝑡𝑟 𝑓(a) ≤ 𝑡𝑟𝑓(b) for all monotonically increasing convex functions 𝑓 from ℝ to ℝ. 

 

Proof:  

Let  𝑎 ≺𝑤 𝑏, for 𝑎, 𝑏 ∈ ℝ𝑛 , that is ∑ 𝑎𝑖↓𝑘𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘𝑖=1 . 
Consider a function 𝑓𝑟(𝑎) = (𝑎 − 𝑟), firstly we will show that this function is convex. 
 𝑓𝑟(𝑡𝑎1 + (1 − 𝑡)𝑎2)≤ (𝑡(𝑎1 − 𝑟) + (1 − 𝑡)(𝑎2 − 𝑟))+= 𝑡𝑓(𝑎1) + (1 − 𝑡)𝑓(𝑎2) for 0 ≤ 𝑡 ≤ 1 ⇒ 𝑓𝑟(𝑎)  is convex. 
 

To show 𝑓𝑟(𝑎) is monotonically increasing function, that is if 𝑎1 ≤ 𝑎2, then   𝑓𝑟(𝑎1) ≤ 𝑓𝑟(𝑎2): 
 𝑓𝑟(𝑎1) = (𝑎1 − 𝑟) ≤ (𝑎1 − 𝑟)+ = 𝑎1 − 𝑟𝑓𝑟(𝑎2) = (𝑎2 − 𝑟) ≤ (𝑎2 − 𝑟)+ = 𝑎2 − 𝑟⇒ 𝑓𝑟(𝑎1) ≤ 𝑓𝑟(𝑎2).  

Let 𝑎 ∈ ℝ𝑛, be in decreasing order. Consider 𝑟 = 𝑎𝑘 , then (𝑎𝑖↓ − 𝑟)+ = 0∀𝑖 ≥ 𝑘 
  𝑡𝑟𝑓𝑟(𝑎) = ∑(𝑎𝑖 − 𝑟)𝑛

𝑖=1 ≤ ∑(𝑘
𝑖=1 𝑎𝑖↓ − 𝑟)+ 

 = ∑ 𝑎𝑖↓𝑘
𝑖=1 − 𝑘𝑟 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1 − 𝑘𝑟,  for 𝑟 = 𝑏𝑘 

≤ ∑(𝑛
𝑖=1 𝑏𝑖↓ − 𝑟) ⇒ 𝑡𝑟 𝑓𝑟(a) ≤ 𝑡𝑟𝑓𝑟(b).    

 

Conversely, let 𝑡𝑟 𝑓𝑟(a) ≤ 𝑡𝑟𝑓𝑟(b) For 𝑎, 𝑏 ∈ ℝ𝑛                 (17) 

To prove    𝑎 ≺𝑤 𝑏, let 𝑎𝑘+1 ≤ 𝑟 ≤ 𝑎𝑘 

 

 = ∑ 𝑎𝑖↓𝑘
𝑖=1 − 𝑘𝑟,                                                    (18)    

 

But ∑ 𝑏𝑖↓𝑘
𝑖=1 − 𝑘𝑟 ≤ ∑(𝑘

𝑖=1 𝑏𝑖↓ − 𝑟)+, for 𝑟 = 𝑏𝑘 

≤ ∑(𝑛
𝑖=1 𝑏𝑖↓ − 𝑟)+ = ∑(𝑛

𝑖=1 𝑏𝑖↓ − 𝑟) ,                  (19)    
 

From (17), (18) and (19) we get 
 ∑ 𝑎𝑖↓𝑘
𝑖=1 ≤ ∑ 𝑏𝑖↓𝑘

𝑖=1  ⇒ 𝑎 ≺𝑤 𝑏 
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Furthermore, a real valued function 𝑓 on ℝ𝑛 satisfying 𝑎 ≺ 𝑏 ⇒ 𝑓(𝑎) ≤ 𝑓(𝑏) is Schur-convex, which expresses 

preservation of order rather then convexity. 

Let   𝑓: ℝ𝑛 → ℝ𝑚, the domain of 𝑓 is either all of ℝ𝑛, or some convex set invariant under co-ordinate 

permutations of its elements. Such a map is monotonically increasing if 

Monotonically decreasing if −𝑓 is monotonically increasing, 
 

 
 

Also it is convex if 𝑓(𝑡𝑎 + (1 − 𝑡)𝑏) ≤ 𝑡𝑓(𝑏) + (1 − 𝑡)𝑓(𝑏) 0 ≤ 𝑡 ≤ 1  And concave if −𝑓 is convex. 
 

Theorem 3.6  

Let 𝑓: ℝ𝑛 → ℝ𝑚 be a convex map, suppose it, for any 𝑃 ∈ 𝑆𝑛, then there exist 𝑃′ ∈ 𝑆𝑚 such that                          

 
Where 𝑆𝑛 denotes the grope of 𝑛 × 𝑛 permutation matrix. In addition if 𝑓 is monotonically increasing, then 𝑓 is 

strongly isotone. 

Proof 1  

Let 𝑎 ≺ 𝑏 in ℝ𝑛, by the lemma (2.9) there exists 𝑃1, 𝑃2, . . . , 𝑃𝑁 ∈ 𝑆𝑛 permutation matrices and real positive 

numbers 𝜆1, 𝜆2, . . . , 𝜆𝑁 with ∑ 𝜆𝑗𝑛𝑗=1 = 1, such that 𝑎 = ∑ 𝜆𝑗𝑛
𝑗=1 𝑃𝑗𝑏. 

 

So by (20) and convexity of 𝑓 we have 𝑓(𝑎) = 𝑓 (∑ 𝜆𝑗𝑛
𝑗=1 𝑝𝑗𝑏) ≤ ∑ 𝜆𝑗𝑛

𝑗=1 𝑓(𝑝𝑗𝑏)
= ∑ 𝜆𝑗𝑛

𝑗=1 𝑝′𝑗𝑓(𝑏) = 𝑐 say ,  

Then 

 
Now suppose 𝑓 is monotonically increasing, let 𝑑 ≺𝑤 𝑏 then, by (2.10) there exists 𝑎, such that 𝑑 ≤ 𝑎 ≺ 𝑏, hence 

 
Recall the remark from the literature (Bhatia, 1997)as follows. 

1. If 𝑓: ℝ → ℝ is convex, then the induced map 𝑓: ℝ𝑛 → ℝ𝑛 is isotone. 

2. If 𝑓: ℝ → ℝ is convex and monotonically increasing, then the induced map 𝑓: ℝ𝑛 → ℝ𝑛 is strongly isotone. 
 

The above results imply that: 
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ℝ+𝑛    Here stands for the collection of vectors 𝑎 ≥ 0, |𝑎| = (|𝑎1|, |𝑎2|, . . . , |𝑎𝑛|) and 𝑎+ = 𝑎 ∨ 0. 
Proof 1    

Let 𝑎 ≺ 𝑏 in ℝ𝑛, and let 𝑓(𝑎) = |𝑎| we want to show that 𝑓(𝑎) = |𝑎| is convex in ℝ. 𝑓(𝑎) = |𝑎|, for some 0 ≤ 𝑡 ≤ 1𝑓(𝑡𝑎 + (1 − 𝑡)𝑏) ≤ |𝑡|𝑎| + (1 − 𝑡)|𝑏|= 𝑡𝑓(𝑎) + (1 − 𝑡)𝑓(𝑏), for 0 ≤ 𝑡 ≤ 1  

So by first result the function 𝑓(𝑎) = |𝑎| is isotone in ℝ𝑛 . (2)   Let 𝑎 ≺ 𝑏 in ℝ𝑛, and let 𝑓(𝑎) = 𝑎2 we want to show that 𝑓(𝑎) = 𝑎2 is convex in ℝ, 
 𝑓(𝑡𝑎 + (1 − 𝑡)𝑏) = 𝑡2𝑎2 + (1 − 𝑡)2𝑏2 + 2𝑡𝑎(1 − 𝑡)𝑏≤ 𝑡𝑎2 + (1 − 𝑡)𝑏2= 𝑡𝑓(𝑎) + (1 − 𝑡)𝑓(𝑏) for 0 ≤ 𝑡 ≤ 1  

Then, by first result the function 𝑓(𝑎) = 𝑎2 is isotone in ℝ𝑛. (3)   Let 𝑎 ≺𝑤 𝑏 in ℝ+𝑛 , and let   𝑓(𝑎) = 𝑎𝑝, we want to show that 𝑓(𝑎) = 𝑎𝑝 is convex and monotonically 

increasing in ℝ+. 

To show the function 𝑓(𝑎) = 𝑎𝑝 is convex in 𝑅+ for 𝑝 > 1, 𝑓″(𝑎) ≥ 0, since 𝑝 > 1, so it is convex. 
Let     𝑎 ≤ 𝑏 ⇒ 𝑎𝑝 ≤ 𝑏𝑝, since 𝑎, 𝑏 ∈ 𝑅+  and   𝑃 > 1, so it is monotonically increasing in ℝ+. 

This implies that, for 𝑝 > 1 ⇒ 𝑓(𝑎) = 𝑎𝑝 is strongly isotone in   ℝ+𝑛 , so 𝑎𝑝 ≺𝑤 𝑏𝑝. (4)   Let 𝑓(𝑎) = 𝑎+, and 𝑎 ≺𝑤 𝑏 in ℝ𝑛 ⇒ ∑ 𝑎𝑖↓𝑘𝑖=1 = ∑ 𝑏𝑖↓𝑘𝑖=1  

Since 𝑎+ is obtained from 𝑎 by replacing the negative co-ordinates of 𝑎, by 0 so if there is negative co-ordinates 

in 𝑎, then 
 ∑ 𝑎𝑖↓𝑘

𝑖=1 ≤ ∑(𝑘
𝑖=1 𝑎𝑖↓)+. 

Similarly for 𝑏 
 

 

 

 

 

 

 

 

 
 

Returning to Theorem (3.6) we note that for 𝑚 = 1, the condition (20), that is [𝑓(𝑝𝑎) = 𝑝′𝑓(𝑎)∀𝑎 ∈ ℝ𝑛], 
Says 𝑓 is permutation invariant, that is 𝑓(𝑝𝑎) = 𝑓(𝑎)∀𝑎 ∈ ℝ𝑛 and 𝑝 ∈ 𝑆𝑛 . 
In this case Theorem (3.6) says that if a function 𝑓: ℝ𝑛 → ℝ is convex and permutation invariant, then it is 

isotone. 

Also every isotone function 𝑓: ℝ𝑛 → ℝ has to be permutation invariant, because 𝑝𝑎, and  𝑎, majorized each other, 

that is 𝑝𝑎 ≺ 𝑎, hence being isotone of 𝑓 implies 𝑓(𝑝𝑎) = 𝑓(𝑎) in this case. 
 

Theorem 3.7 

Let 𝑓: ℝ𝑛 → ℝ be a convex function and let. 
 𝑔(𝑎) = max𝑃∈𝑆𝑛𝑓(𝑃𝑎), 
Then  𝑔 is isotone, if in addition 𝑓 is monotonically increasing, then 𝑔 is strongly isotone. 
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Proof 1  

Let 𝑃′ ∈ 𝑆𝑛 be permutation matrix, 
 𝑔(𝑃′𝑎) = max𝑝∈𝑆𝑛𝑓(𝑃𝑃′𝑎). 
 

Now 𝑃𝑃′ is again a permutation matrix so we can write 𝑃𝑃′=𝑄, so 𝑃𝑃′ (𝑎)=𝑄(𝑎). Since 𝑄 is 
 𝑔(𝑃′𝑎) = max𝑄∈𝑆𝑛𝑓(𝑄𝑎), 
 

Which implies  𝑔 is convex. 
 

 
So we can conclude that, 𝑔 is isotone.  
 

 
 

So, 𝑔 is monotonically increasing, hence 𝑔 is strongly isotone. 
 

CONCLUSION:  

There are many conditions on vectors which implies 

Majorization. Some of these conditions presents weak-

ly submajorization and some shows weakly super-

majorization which are forms of majorization, we 

defined all of them in this paper. The properties of 

Majorization, Weakly supermajorization and weakly 

submajorization and the relations between them are 

explored in this work with examples.  By considering 

the concept of our title Majorization and its appli-

cations on some Functions, we summarized the appli-

cation of Majorization on some functions like mono-

tonic functions, convex functions and so on with some 

properties. Such results are explained by theorems and 

examples.   
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